skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Heberle, Joachim"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The pH Low Insertion Peptide (pHLIP) is a useful model for exploring the biophysical chemistry of pH-driven membrane insertion and folding. This review discusses recent advancements in understanding the molecular mechanisms underlying pHLIP behavior, focusing on its ability to transition from a soluble, unstructured state to a membrane-inserted α-helix. Protonation of acidic residues, changes in peptide hydrophobicity, and interactions with the lipid bilayer, are described. Recent studies using NMR, infrared spectroscopy, and molecular dynamics simulations have provided a stepwise mechanistic model of the coupled folding and insertion process including its intermediate states present under different pH conditions. In addition, pHLIP ability to selectively target acidic microenvironments, such as those found in tumors, has made it a promising tool for biomedical applications. We provide an overview of recent fundamental studies and applications and discuss how future work can benefit from combining advanced experimental and computational approaches to refine our understanding of the peptide’s structure–function relationships. 
    more » « less
    Free, publicly-accessible full text available May 1, 2026